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A CALCULATION METHOD FOR TANGENTIAL
SPRAY DRYERS

P. S. Kuts and V. A. Dolgushev UDC 533.697:621.532

A method is presented for calculating the design parameters of a cylindrical spray dryer with
tangential heat-carrier input; the relationships are analyzed.

Spiral flows of interacting phases are used in drying equipment because they set up a centrifugal pattern,
which allows one to raise the concentration of the dispersed component, increase the relative speed of the
phases, and thus accelerate the heat and mass transfer.

Here we examine a mathematical model for droplet interaction with a spiral gas flow in order to define
the particle dynamics in relation to chamber design, with the object of providing basic concepts for design
purposes.

The motion of a droplet in such a chamber is a complex curvilinear one in a spatial velocity distribution;
the motion is affected by numerous different forces and other effects [1, 2]. The following external forces act
on a particle in the general case: gravitation, reactive evaporation, molecular attraction, electrostatic, elec~
tromagnetic, and gasdynamic.

The latter includes the aerodynamic resistance, the counterpressure, the force due to turbulent mass
transfer, and the Magnus force, the last arising by rotation of a particle around its axis.

It is impossible to reflect the combined action of all these forces fully in the differential equation, so
various assumptions must be made.

We consider the motion of the heat carrier along a spiral line whose pitch is uniform along the length
and radius, with the motion taken as stationary at an average velocity and as not involving rapid turbulent ex-
change. Radial leakage and secondary eddies are neglected, as is the loss of small particles toward the center
of the chamber., It is assumed that the centrifugal force is purely radial, while the tangential and axial veloci-
ties of the particle and carrier are equal at each instant. In addition, we incorporate the change in droplet mass
as well as the effects of the radial centrifugal force and viscous resistance.

The centrifugal force is defined by

Fof,=mp7—- @

This force produces radial motion of the particle (separation speed), and the result is a resistance force
exerted by the gas:

@)
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where the aerodynamic-resistance coefficient [2] for Re ) < lisyg= 24,/Re(p), while for Re ) = 1000 it is

&= (24/Re(pl@ + 0.167Re2¢/)§’).

The centrifugal force increases the relative velocity of the particle from zero up to some limiting value
defined by F, ¢ = Fp g3 equilibrium corresponds to Stokes' law, in which case the differential equation becomes

2 — 2 —
wp M et do—uvp 3)
r Rep, 2q dt

where the first and second terms represent the centrifugal force and the viscous resistance, while the third is
the inertial force in the radial direction.

The mass change in the evaporating droplet gives [3] 62 = &2 — [(6% — 6%) / 7x]7. which goes with the rela-
tions mp = 6%y, /64, s = 6%/ 4, and Re ) = 6(v = vp)/ v to put (3) in the form

5

w3 vy, d{v—uovp
©p 15— " Loy e @

p 18 . 5 —62 (v—rp d
0 p T1Ve

x

For convenience in integration, the relative velocity in the radial direction is put in the differential form
v = vp =dr/d7, while the coefficient to the first derivative for Rep) = 1 is put as

16"?1 _ (5)

and for Rep) = 1000 as

' 18vy y
Aty = : 5 _lagc (1 4-0.167 Rej£3). (6)
o= ()

Then the general differential equation for a particle of variable mass moving in the radial direction
becomes

d*r dr »
— L A(D) — —o¥% =0. 7
dt? ) dv m}r @

To determine the displacement of the particle together with the flow in the axial direction w2 need to
know the pitch of the spiral motion, which is defined by

ll = 2nr tg ﬁ! (8)

where j is the average angle represented by the spiral, which is related to the coefficient of angular-momen-
tum counservation by

1 0.5
tep= (o —1) - (®)

We assume a linear relationship between the axial component of the flow speed and the radius throughout
the chamber, and also a relationship between the period of the rotational motion and time in terms of the
angular velocity « = gy w;,/ Rof the flow, in which the flow entrains the particle, which gives us the initial velocity
axial direction as

w

1 0.3
typ= mr( e —1>
We assume the motion to be uniformly decelerated and employ the condition that the axial component of
the velocity becomes zero after a time 74 on account of collision of jets with one another and with the end wall,
which gives us the acceleration as
05
Up=— (—1- ——1) Do)r/rx,

2
|28 )

and hence the particle velocity as
Llp= wr ( el

2
w

_1)0'5(1~—c/rx).
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We integrate the latter expression to get the equation of motion for the particle in the axial direction as

1 V05 o
.\:=m( = —l) jr(l—r/tx)dt.- 10)
2

0

To analyze the drying in such a chamber in accordance with (7) and (10) we need to close the system of
equations via additional relationships and also initial and boundary conditions, As an additional condition we
specify the flow rate

Q

W, == ~——— 11
v (abk,) 3600 (1)
and a formula relating the conservation of angular momentum to the geometrical and dynamic parameters:
-5
2R e k.a \2 abk 2
€ = T 9mRL - 1—( F—a ) _( P ) . @2)
1 4+0.027R (—i°n-)-° oy \ Rarccos( R ) ) i
together with the boundary conditions
dr
=0, r=r, —=0.
' n dr . a3)

Equations (7) and (10)-(13) allow one to analyze the dynamic and design features, particularly any coupling
between them. However, in calculating the chamber dimensions and sizes of components (particularly the inlet
and outlet holes), we need to know the time required for a crust to form on a droplet, which defines the time at
which the particle will no longer stick to the structure, and we also need to know the time required to dry to a
given final water content. :

The decisive factor in calculating the chamber radius is the time for crust formation, while the drying
time is the relevant factor as regards the length. These times can be determined by experiment or from
theory, but there are substantial difficulties in the calculation [4], so we have employed a method termed
direct and inverse treatment.

In the first stage, we assume that the dimensions are known for a spray dryer or a particular output,
together with the sizes of the inlet and outiet holes, the radius of the dispersal zone, and the dynamic param-
eters, but the crust-formation and drying times are unknown.

We substitute these quantities into (7) and (10) to derive the time 7 for the particle to reach the outer
radius of a chamber, and also the time 7¢ spent by the particle in the chamber.

If an actual working plant shows no deposition, then 7, may be taken as less than the time needed to
" reach the wall. ‘

Also, ¢ (the drying time) can be judged from the quality of the final product, so one can calculate the
nominal crust-formation and drying times on the basis of the entire set of definitive parameters for a par-
ticular mode of drying for a particular material,

In the second stage, we specify the productivity of the system as regards amount of water to be evap-
orated, the speed of the heat carrier in the tangential inlets, the same at the outlet, the loss of angular veloc-
ity, and the radius of the spraying zone, which gives us the coordinates of a particle at times 7¢ and 7%, which
are related as follows to the dimensions of the chamber: the current radius of motion of an evaporating par-
ticle at time 7, attains the chamber radius, while at time 7y the coordinate in the axial direction attains the

- length.

We then solve-the boundary-value problem represented by (7) and (10)-(13) to determine the sizes of the
inlet holes; the formulation implies that the dimensions and the sizes of the holes are not unambiguously de-
fined for a chamber of a given output, since all these are effected by the inlet speed. We thus have a relation-
ship between the parameters of the motion of a droplet and the chamber design.

The actual hydrodynamics of the chamber and the details of the heat and mass transfer during drying are
reflected in the bulk heat-transfer coefficient [4, 5], which may be derived by processing laboratory and pro~
duction data for such spray dryers:
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Fig. 1. Drop coordinates in relation to 7 and 7, with 7o = 0.6 7x for ey = 0.5; 1) r; = 0.1 m, w
17.2 sec™; 2) ry = 0.5 m, w =14 sec™ . R, m; ty and t,, sec; Lym.

Fig. 2. Drop coordinates in relation to wi, for r; = 0.1 m, 7o = 0.226 sec, 7x = 0.35 sec; 1) gy = 0.5;
2) ey = 0.7, wipn, m/sec.

Fig. 3. Drop coordinates in relation to ry (in m) for 7, = 0.226 sec, 7 = 0.35 sec, w =10 sec™!, &y =

0.5 as derived from: 1) @0); 2) (10").

 Awl
o = 4.7-107 A A70 73, (14)
3.2

which applies with an error less than 129, within the following limits,AQ,1 = 14-47,
85,5 =25-107°—65.107° m,  Re(ouy= 4.5—32.

Equation (14) serves to close the boundary-value problem of (7) and (10)-(13), i.e., for specified working
conditions, chamber size, and inlet hole size.

In formulating any calculation method, it is necessary to check the resuits for reliability, and in this
connection we examine the rigor in the formulation. :

When the system of (7) and (10)-(14) is being solved, errors of various origins can creep in; first, the
initial data may not adequately describe the physical process on account of deficiencies in the theory and er-
rors in the measurements. Secondly, errors arise in solving the equations themselves. As equations (7), (10),
and (13) are familiar, the system was solved by a Minsk-32 computer, with the second-order differential equa-
tion of (7) integrated by the Runge —Kutta —Tanaka method with the standard RKTZ program, while transcenden-
tal equation (12) was solved by division of the intervals into halves, and the system as a whole was solved by
steepest descent [6], in which case the calculations can be performed with any accuracy (in our case, the
equations were solved with an error of 0.01), and so the errors arising from the second cause are unimpor-
tant. The basic error thus arises from inexact formulation of the problem.

It is sufficient to say that the empirical formula of (14) applies with a relative error of 12%; to estimate
the possible errors in the formulation we thus assume that the pitch in the spiral motion is constant along the
radius, in which case (10) becomes

2.3
X=0 (»—, —1 } Rt (1 — 0.51/1,). o

Calculations from (10) and (10') show that a systematic error in determining the drying time of up to 29%
arises from error in the formulation, as against only 14% for the chamber length. Therefore, one concludes,
first of all, that the method is such that it tends to reduce the effects of error in determining the drying time
on the accuracy of chamber size definition, while, secondly, that the calculation error is quite acceptable from
the engineering viewpoint,

These relationships allow us to define the effect of the following factors on the chamber design: crust-
formation and drying times (Fig. 1), input speed (Fig. 2), and sprayer design (Fig. 3).

Figure 1 shows that the chamber dimensions increase almost parabolically with the crust-formation time
and, correspondingly, the drying time, with the result that the dimensions begin to increase rapidly beyond a
certain point, which restricts the region of application of such plant,
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TABLE 1. Sizes of Chamber and Inlet Holes in Relation to ry for
w =10 sec™ and k, = 2

ry @Win R L a b
|
0,668 14,5 0,873 1,81 0,143 I 0,398
0,680 14,8 0,889 1,95 0,144 0,389
0,692 15,1 0,904 1,98 0,144 0,382
0,704 15,3 0,920 2,02 0 144 0,375
0,716 15,6 0,936 2,05 | 0,144 | 0,369
0,728 15,9 0,951 2,08 } 0,144 ! 0,364
0,740 16,1 0,967 2,12 | 0,243 0,359
0,752 16,4 0,983 2,15 0,143 0,354
0,764 16,6 0,998 2,19 0,142 0,351
0,776 16,9 1,01 2 22 0,141 0,348
0,788 17,2 1,03 2,26 0,139 0,346
0,800 17,4 1,05 2,29 0,138 0,345
0,812 17,7 1,06 2,33 0,136 0,344
0,824 17,9 1,08 2,36 0,134 0,344
0,836 18,2 1,09 2,39 0,132 0,345
0,848 18,5 1,11 2,43 0,129 0,348
0,860 18,7 1,12 2 46 0,126 0,351
0,872 19,0 1,14 2,50 0,122 ) 0,356
0,884 19,3 1,16 2,53 0,119 0,363
0,896 19,5 1,17 2,57 0,114 0,371
0,908 19,8 1,19 2,60 0,109 0,383
0,920 20,0 1,20 2,63 0,103 0,400
0,932 20,3 1,22 2,67 0,097 0,422
0,944 | 20,6 1,23 2,70 0,089 0,454

I i )

Figure 2 shows that the separation effect increases with the input speed, and the more so the higher the
angular-momentum conservation factor, which causes the chamber diameter to increase. At the same time,
the length also increases, since the axial speed increases. The relationships are linear. Further, the rate of
increase in the chamber diameter itself increases with €y, whereas the length tends to fall. The latter is due
to the features governing the tangential and axial components of the velocity.

As regards the adhesion to the wall, the proper design of the sprayer plays an important part, since this
controls the droplet size and the spraying angle, in conjunction with the number and distribution of the sprayers.
All of these factors are incorporated via the diameter and speed of a droplet at the boundary of the spraying
zone, i.e., 6y, dr/dr = vpp and T,

Figure 3 shows the relationship of a chamber size to sprayer zone radius; these relationships and the
conditions imposed on the initial velocities and droplet diameters indicate that spraying by a large number of
jets providing a comparatively small spray divergence angle (about 45°) is necessary to provide for drying
without deposition on the wall of the chamber.

We now consider how the dimensions of the drying chamber are affected by heat and mass transfer in the
two-phase system as a whole; (14) shows that o, is dependent on the speed of the heat carrier, since increase
in the latter accelerates the heat and mass transfer in the boundary layer and thus increases the rate of trans-
fer between the droplets and the carrier.

The thermal conductivity of the gas has a similar effect on the heat-transfer rate; also, the thermal
resistance of the boundary layer is reduced as the temperature is raised.

The heat-transfer factor is inversely proportional to the droplet diameter, but the bulk heat-transfer
coefficient is inversely proportional to the square root of this (1 /5§;§) under the actual working conditions of
a spiral sprayer chamber, so the accelerated heat transfer provided by reducing the droplet size is attained
not only as a result of increasing the heat-transfer surface per unit weight, but also by increase in the heat-
transfer coefficient.

In conclusion, we give an example of calculations on such a drying chamber with countercurrent spiral
flows having a productivity of 300 liters /h (as evaporated water), the calculation being based on the param-
eters of an actual similar chamber of output 100 liters /h. By virtue of the symmetry, we consider only one
half of the chamber. The geometrical parameters area = 0.07 m; k; = 2; b = 0.175 m; agyt = 0.22 m; boyt =
0.22 m; R = 0.6 m; L = 2.1 m, while the air flow rate is Q = 1350 kg /h, and the physical constants for tay =
120°C in the heat carrier are as follows: v = 26,21+ 107% m?/sec; y; = 0.87 kg /m?%; 7, = 1000 kg / m?% &, =10
m; 8¢ = 107 m; ry = 0.25 m,
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Solution of (7) and 10)-(13) gives
T = 0.226 sec, 7, = 0.35 sec, g, = 0.545.

We give the second stage in the calculation, in which the direct problem is solved. The physical setting
in the chamber remains as before. To evaporate 150 liters /h requires 4500 kg /h of air. We specify &y =
0.6, w =10.0 sec™ and vary ry in the range 0.5-0.9 to solve (7) and (10)-(13), which gives the results collected
in Table 1. Then we use (14) to determine the chamber volume and we select the appropriate line of values
from the table (line denoted by the bar).

The calculations thus incorporate the dynamics of individual droplets and also those of the two-phase
system as a whole.

NOTATION

R, L, radius and length of the vortex chamber; a, b, k,, height, width, and number of inlet pipes; a .,
bout, height and width of outlet pipes; u, v, w, axial, radial, and tangential velocity components of heat car-
rier; &y, coefficient of angular-velocity conservation for the velocity near the wall; &g, é¢, 6, 83,, initial,
crust-formation, current, and mean volume-surface ratio diameters of drops; x, r, current coordinates; ¢,
7, Tx, crust-formation time, current time, and drying time, respectively; ry, radius of spraying zone; wip,
wout, heat-carrier velocities at the inlet and outlet, respectively; Ay, volume loading factor of chamber; Ay =
Vs /Veh, where V, is the volume of solution evaporated in 1 h; Vi, chamber volume; Re ©) Re(in)’ Re(out)’
Reynolds numbers based on particle, inlet, and outlet velocities, respectively, Re (in) = wink,a /v, Re(out) =
Woutd out / V3 my, mass of a particle; v, drag; s, area of midsection of a particle; vy, v,, densities of heat
carrier and solution; q, acceleration; v, kinematic viscosity of heat carrier; A, thermal conductivity of heat
carrier at the mean temperature in the dryer. Indices: p, particle parameter.
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